News archives


OCTOBER - DECEMBER 17

JULY - SEPTEMBER 17

APRIL - JUNE 17

JANUARY - MARCH 17

OCTOBER - DECEMBER 16

JULY - SEPTEMBER 16

APRIL - JUNE 16

JANUARY - MARCH 16

OCTOBER - DECEMBER 15

JULY - SEPTEMBER 15

APRIL - JUNE 15

JANUARY - MARCH 15

OCTOBER - DECEMBER 14

JULY - SEPTEMBER 14

APRIL - JUNE 14

JANUARY - MARCH 14

OCTOBER - DECEMBER 13

JULY - SEPTEMBER 13

APRIL - JUNE 13

JANUARY - MARCH 13

OCTOBER - DECEMBER 12

JULY - SEPTEMBER 12

APRIL - JUNE 12

JANUARY - MARCH 12

OCTOBER - DECEMBER 11

JULY - SEPTEMBER 11

APRIL - JUNE 11

JANUARY - MARCH 11

OCTOBER - DECEMBER 10

JULY - SEPTEMBER 10

APRIL - JUNE 10

JANUARY - MARCH 10

OCTOBER - DECEMBER 09

JULY - SEPTEMBER 09

APRIL - JUNE 09

JANUARY - MARCH 09

OCTOBER - DECEMBER 08

JULY - SEPTEMBER 08

APRIL - JUNE 08

JANUARY - MARCH 08

OCTOBER - DECEMBER 07

JULY - SEPTEMBER 07

APRIL - JUNE 07

JANUARY - MARCH 07

 
  current news   Press   selected story    
     
  19th January  
  Critical Role of DNA Checkpoints in Mediating Genotoxic-Stress-induced Filamentous Growth in Candida albicans
 
 


Authors
Qing-Mei Shi, Yan-Ming Wang, Xin-De Zheng, Raymond Teck Ho Lee, and Yue Wang.

Abstract
The polymorphic fungus C. albicans switches from yeast to filamentous growth in response to a range of genotoxic insults, including inhibition of DNA synthesis by hydroxyurea (HU) or aphidicolin (AC), depletion of the ribonucleotide-reductase subunit Rnr2p, and DNA damage induced by methylmethane sulphonate (MMS) or ultraviolet light (UV). Deleting RAD53, which encodes a downstream effector kinase for both the DNA-replication and DNA-damage checkpoint pathways, completely abolished the filamentous growth caused by all the genotoxins tested. Deleting RAD9, which encodes a signal transducer of the DNA-damage checkpoint, specifically blocked the filamentous growth induced by MMS or UV but not that induced by HU or AC. Deleting MRC1, the counterpart of RAD9 in the DNA-replication checkpoint, impaired DNA synthesis and caused cell elongation even in the absence of external genotoxic insults. Together, the results indicate that the DNA-replication/damage checkpoints are critically required for the induction of filamentous growth by genotoxic stress. In addition, either of two mutations in the FHA1 domain of Rad53p, G65A and N104A, nearly completely blocked the filamentous-growth response but had no significant deleterious effect on cell-cycle arrest. These results suggest that the FHA domain, known for its ability to bind phosphopeptides, has an important role in mediating genotoxic-stress-induced filamentous growth and that such growth is a specific, Rad53p-regulated cellular response in C. albicans.



MBC in Press, published December 20, 2006 as 10.1091/mbc.E06-05-0442.