News archives


OCTOBER - DECEMBER 17

JULY - SEPTEMBER 17

APRIL - JUNE 17

JANUARY - MARCH 17

OCTOBER - DECEMBER 16

JULY - SEPTEMBER 16

APRIL - JUNE 16

JANUARY - MARCH 16

OCTOBER - DECEMBER 15

JULY - SEPTEMBER 15

APRIL - JUNE 15

JANUARY - MARCH 15

OCTOBER - DECEMBER 14

JULY - SEPTEMBER 14

APRIL - JUNE 14

JANUARY - MARCH 14

OCTOBER - DECEMBER 13

JULY - SEPTEMBER 13

APRIL - JUNE 13

JANUARY - MARCH 13

OCTOBER - DECEMBER 12

JULY - SEPTEMBER 12

APRIL - JUNE 12

JANUARY - MARCH 12

OCTOBER - DECEMBER 11

JULY - SEPTEMBER 11

APRIL - JUNE 11

JANUARY - MARCH 11

OCTOBER - DECEMBER 10

JULY - SEPTEMBER 10

APRIL - JUNE 10

JANUARY - MARCH 10

OCTOBER - DECEMBER 09

JULY - SEPTEMBER 09

APRIL - JUNE 09

JANUARY - MARCH 09

OCTOBER - DECEMBER 08

JULY - SEPTEMBER 08

APRIL - JUNE 08

JANUARY - MARCH 08

OCTOBER - DECEMBER 07

JULY - SEPTEMBER 07

APRIL - JUNE 07

JANUARY - MARCH 07

 
  current news   Press   selected story    
     
  7th November  
  Scd5p mediates phosphoregulation of actin and endocytosis by the type 1 phosphatase Glc7p in yeast
 
 




Authors
Guisheng Zeng*, Bo Huang*, Suat Peng Neo, Junxia Wang, and Mingjie Cai
*: co-first authors .

Abstract
Pan1p plays essential roles in both actin and endocytosis in yeast. It interacts with, and regulates the function of, multiple endocytic proteins and actin assembly machinery. Phosphorylation of Pan1p by the kinase Prk1p down-regulates its activity, resulting in disassembly of the endocytic vesicle coat complex and termination of vesicle-associated actin polymerization. In this study, we focus on the mechanism that acts to release Pan1p from phosphorylation inhibition. We show that Pan1p is dephosphorylated by the phosphatase Glc7p, and the dephosphorylation is dependent on the Glc7p-targeting protein Scd5p, which itself is a phosphorylation target of Prk1p. Scd5p links Glc7p to Pan1p in two ways: directly by interacting with Pan1p and indirectly by interacting with the Pan1p-binding protein End3p. Depletion of Glc7p from the cells causes defects in cell growth, actin organization and endocytosis, all of which can be partially suppressed by deletion of the PRK1 gene. These results suggest that Glc7p antagonizes the activity of the Prk1p kinase in regulating the functions of Pan1p and possibly other actin- and endocytosis-related proteins.




Published in The EMBO Journal. Published online 29 November 2007.

Review article
Pan1p: An actin director of endocytosis in yeast

Authors
Bo Huang, Mingjie Cai.

Abstract
The yeast protein Pan1p plays a key role in actin-driven endocytosis. The molecular architecture enables the protein to perform multivalent tasks. First, Pan1p acts as a central scaffold for assembly of coat complex at the endocytic sites through its binding to multiple endocytic proteins. Secondly, Pan1p is also required for normal actin cytoskeleton organization and dynamics at the cell cortex. It is capable of F-actin binding and promoting the Arp2/3-mediated actin nucleation via its WH2 and acid domains. Pan1p, therefore, is responsible for the mechanism of coupling the vesicle coat to actin network in the early steps of internalization. The function of Pan1p is under a negative regulation by the kinase Prk1p. Phosphorylation of Pan1p by Prk1p results in disassembly of the coat complex and dissociation of the vesicle from actin meshwork after internalization. The phosphorylation of Pan1p is possibly reversed by the type 1 phosphatase Glc7p, which will allow Pan1p to be reused for coat assembly in the next round of endocytosis.